Introducción
La física es una de las disciplinas académicas más antiguas y, a través de la inclusión de la astronomía, quizás la más antigua. Durante gran parte de los últimos dos milenios, la física, la química, la biología y ciertas ramas de las matemáticas formaron parte de la filosofía natural, pero durante la revolución científica del siglo XVII, estas ciencias naturales surgieron como iniciativas de investigación únicas por derecho propio. La física es una de las disciplinas científicas más fundamentales y su objetivo principal es comprender cómo se comporta el universo.
Desarrollo del tema
1. Historia de la física
Se dice que la física no surgió como un campo de estudio definido hasta principios del siglo XIX. Antiguamente los chinos, babilonios, egipcios y mayas observaron el movimiento de los planetas logrando predecir eclipses. Los griegos realizaron una serie de especulaciones filosóficas introduciendo dos ideas fundamentales con respecto a los componentes del Universo; el atomismo propuesto por Leucipo en el siglo IV a.C., y la teoría de los elementos, formulada en el siglo anterior.
Durante el período helenístico, Alejandría se convirtió en el centro científico de la civilización occidental, realizando sorprendentes avances. En esa época uno de los científicos más destacados fue el matemático e inventor Arquímides, quien logró diseñar con palancas y tornillos varios aparatos mecánicos prácticos y midió la densidad de objetos sólidos sumergiéndolos en un líquido. Por el lado de la astronomía cabe mencionar al astrónomo Aristarco de Samos, quien encontró la relación matemática entre las distancias de la Tierra al Sol y de la Tierra a la Luna. En las matemáticas destacó el astrónomo, geógrafo y matemático Eratóstenes, que midió la circunferencia de la Tierra y elaboró un catálogo de estrellas. Hiparco de Nicea descubrió la precesión de los equinoccios, en el siglo II, y Tolomeo propuso el sistema que lleva su nombre para explicar el movimiento planetario, que ubica a la Tierra la Tierra en el centro y el Sol, la Luna y las estrellas giran en torno a ella en órbitas circulares.
Edad Media
Durante el siglo XIII, se produjeron pocos avances. Sabios como Averroes o Ibn al-Nafis, conservaron muchos tratados científicos heredados de la Grecia clásica.
Algunos logros que vale la pena destacar fue el trabajo realizado por el filósofo escolástico y teólogo italiano Santo Tomás de Aquino, quien trató de demostrar que las obras de Platón y Aristóteles eran comparables con las Sagradas escrituras. Además el británico Roger Bacon fue uno de los pocos filósofos que defendió el método experimental como auténtica base del conocimiento científico; también investigó en astronomía, química, óptica y diseño de máquinas.

Época moderna
La ciencia moderna surgió tras el Renacimiento (siglo XVI y comienzos del XVII). El hito que justifica lo anterior es el logro de cuatro astrónomos destacados que lograron interpretar de manera muy satisfactoria el comportamiento de los cuerpos celestes. Nicolás Copérnico propuso un sistema heliocéntrico, en el que los planetas giran alrededor del Sol, pero el detalle era que él pensaba que las órbitas planetarias eran circulares. Tycho Brahe, astrónomo danés, adoptó una fórmula de compromiso entre los sistemas de Copérnico y Tolomeo. Según su fórmula los planetas giraban en torno al Sol, mientras que el Sol giraba alrededor de la Tierra.
Las medidas tomadas por Brahe permitieron a su ayudante Johannes Kepler obtener los datos suficientes para atacar al sistema de Tolomeo y enunciar tres leyes que se ajustaban a una teoría heliocéntrica modificada. Otro hombre clave de la época es Galileo. Él había oído hablar de la invención del telescopio y construyó uno. Con el telescopio en 1609 pudo confirmar el sistema heliocéntrico observando las fases del planeta Venus. También descubrió las irregularidades en la superficie de la Luna, los cuatro satélites de Júpiter más brillantes, las manchas solares y muchas estrellas de la Vía Láctea.
Los descubrimientos astronómicos de Galileo y sus trabajos sobre mecánica precedieron la obra del matemático y físico británico del siglo XVII Isaac Newton, uno de los científicos más grandes de la historia.

La Física a partir de Newton
A la edad de 23 años Isaac Newton desarrolló los principios de la mecánica, formuló la ley de la gravitación universal, separó la luz blanca en sus colores constituyentes e inventó el cálculo diferencial e integral.
Todas sus contribuciones permitieron cubrir una amplia gama de fenómenos naturales. Es decir, que gracias al aporte de Newton se demostraron que tanto las leyes de Kepler, sobre el movimiento planetario, como los descubrimientos de Galileo, sobre la caída de los cuerpos, se deducen de la segunda ley del movimiento (segunda ley de Newton) combinada con la ley de la gravitación.
Newton también fue capaz de explicar el efecto de la Luna sobre las mareas, así como la precesión de los equinoccios.
2. Física: una ciencia entretenida
En la época de la antigüedad, grandes civilizaciones como fueron los chinos, babilonios, mayas y egipcios se dedicaron a observar los movimientos planetarios; sin embargo, no fueron capaces de determinar por qué se producían. Más tarde, los filósofos griegos sacaron a la luz dos ideas sobre los elementos que componen el Universo, que se convertirían en algo trascendental. Una fue el atomismo (postulado por el pensador griego Leucipo en el siglo IV a.C.) y otra, opuesta a la anterior, la teoría de los elementos, formulada un siglo antes.
En cuanto a la teoría del atomismo clásico postula que el “todo” se compone exclusivamente de partículas indivisibles llamadas átomos, los que poseen únicamente las propiedades de tamaño, forma, impenetrabilidad y movimiento.

La teoría de los elementos, formulada por Empédocles en el siglo V a.C., postulaba cuatro elementos o raíces del ser como principio de la materia: fuego, aire, agua y tierra.
Durante la Edad Media no se observaron grandes adelantos científicos en el campo de la física; sin embargo, después del Renacimiento, a fines del siglo XVI y comienzos del XVII, cuatro astrónomos fueron los responsables de interpretar el movimiento de los cuerpos celestes, convirtiéndose en los más famosos físicos de la historia:
- Nicolás Copérnico: propuso el sistema heliocéntrico, en que todos los planetas, incluida la Tierra, giraban alrededor del Sol.
- Tycho Brahe: concluyó que eran cinco los planetas que giraban en torno al Sol (Mercurio, Venus, Marte, Júpiter y Saturno) y que, a su vez, este nuevo sistema solar giraba alrededor de la Tierra.
- Galileo Galilei: astrónomo, físico y matemático italiano, sus investigaciones sobre las leyes de la naturaleza constituyen los fundamentos de la ciencia experimental moderna, entre otras cosas, demostró que los objetos se demoran el mismo tiempo en caer, independientemente de su masa, y que su velocidad aumenta uniformemente con el tiempo de caída.
- Isaac Newton: fue uno de los grandes físicos de la historia, sus tres leyes del movimiento fueron un aporte trascendental y la base de la física dinámica.
3. Hitos de la física en el siglo XX
Gracias a los avances del primer tercio del siglo XX, la física logró un gran crecimiento, fundamentalmente los adelantos tecnológicos, en tecnología informática, electrónica, aplicaciones de la energía nuclear y aceleradores de partículas de altas energías. Pero entre las aportaciones más interesantes de la física durante el siglo XX, podemos destacar:
- Aceleradores: Las emisiones artificiales de alta energía fueron producidas por primera vez en 1932 por el físico británico John Cockcroft y su colega irlandés Ernest Walton, que emplearon generadores de alta tensión para acelerar electrones hasta unos 700.000 eV. Los aceleradores modernos producen energías de millones de eV (megaelectronvoltios, o MeV), miles de millones de eV (gigaelectronvoltios, o GeV) o incluso billones de eV (teraelectronvoltios, o TeV).
- Ciclotrón: los físicos estadounidenses Ernest Orlando Lawrence y Milton Stanley Livingston inventaron el ciclotrón, dispositivo que emplea un campo magnético para mantener partículas cargadas moviéndose en trayectorias circulares, y en cada media vuelta proporciona a las partículas un pequeño «empujón» eléctrico hasta que acumulan las altas energías deseadas.
- Partículas: Además del electrón, el protón, el neutrón y el fotón, se han descubierto muchas otras partículas fundamentales.
En 1932, el físico estadounidense Carl David Anderson descubrió el antielectrón o positrón. Cuando un positrón choca con un electrón se aniquilan entre sí y dan lugar a una lluvia de fotones. En 1935, el físico japonés Yukawa Hideki postuló la existencia de una partícula de masa intermedia entre el electrón y el protón. Esa partícula, que se denominó muón, era el «pegamento» nuclear de Yukawa. Los experimentos posteriores del físico británico Cecil Frank Powell y otros llevaron al descubrimiento de una partícula algo más pesada, con una masa 270 veces mayor que la del electrón.
4. Conceptos básicos de Física
Aceleración
Se conoce también como aceleración lineal, y es la variación de la velocidad de un objeto por unidad de tiempo, se define como vector, es decir, tiene módulo (magnitud), dirección y sentido. De ello se deduce que un objeto se acelera si cambia su celeridad (la magnitud de la velocidad), su dirección de movimiento, o ambas cosas. Si se suelta un objeto y se deja caer libremente, resulta acelerado hacia abajo.
Cuando la celeridad de un objeto disminuye, se dice que decelera. La deceleración es una aceleración negativa. Un objeto sólo se acelera si se le aplica una fuerza. Según la segunda ley del movimiento de Newton, el cambio de velocidad es directamente proporcional a la fuerza aplicada, un cuerpo que cae se acelera debido a la fuerza de la gravedad.
Aceleración angular
La velocidad angular de un cuerpo que gira, es la variación del ángulo descrito en su rotación en torno a un eje determinado por unidad de tiempo. Una aceleración angular es un cambio de la velocidad angular, es decir, un cambio en la tasa de rotación o en la dirección del eje. Por lo tanto, la aceleración angular es diferente de la aceleración lineal.
Espacio
En el concepto corriente es una extensión tridimensional, capaz de contener los objetos sensibles. Durante muchos años se consideró que el espacio tenía tres dimensiones: largo, ancho y alto. Este tipo de espacio, coincide plenamente con la experiencia cotidiana y con todas las formas habituales de medida de tamaños y distancias. Sin embargo, las investigaciones modernas en matemáticas, física y astronomía han indicado que el espacio y el tiempo forman en realidad parte de un mismo continuo, al que los científicos denominan espacio-tiempo o continuo espacio temporal. Hay tres formas de representar el espacio. En una dimensión, en dos o en tres. El espacio bidimensional se mide en metros cuadrados (unidad de superficie).
Fuerza
En física cualquier acción o influencia que modifica el estado de reposo o de movimiento de un objeto. La fuerza que actúa sobre un objeto de masa m es igual a la variación del momento lineal (o cantidad de movimiento) de dicho objeto respecto del tiempo. Si se considera la masa constante, para una fuerza también constante aplicada a un objeto, su masa y la aceleración producida por la fuerza son inversamente proporcionales. Por tanto, si una fuerza igual actúa sobre dos objetos de diferente masa, el objeto con mayor masa resultará menos acelerado.
Las fuerzas se miden por los efectos que producen, es decir, a partir de las deformaciones o cambios de movimiento que producen sobre los objetos. Un dinamómetro es un muelle o resorte graduado para distintas fuerzas, cuyo módulo viene indicado en una escala. En el Sistema Internacional de unidad, la fuerza se mide en newtons: 1 newton (N) es la fuerza que proporciona a un objeto de 1 kg de masa una aceleración de 1 m/s 2 .
Mientras más intensa es la fuerza, mayor es su efecto en un cuerpo. La intensidad de una fuerza se mide en newtons mediante un instrumento llamado dinamómetro. Las fuerzas se miden por los efectos que producen, es decir, a partir de las deformaciones o cambios de movimiento que producen sobre los objetos.
Para averiguar el efecto combinado de dos o más fuerzas sobre un objeto, hay que considerar la intensidad y la dirección de las mismas. Si actúan en línea recta, sus efectos se suman o se resta. La fuerza es una magnitud vectorial, y esto significa que tiene módulo, dirección y sentido.

Al conjunto de fuerzas que actúan sobre un cuerpo se le llama sistema de fuerzas. Si las fuerzas tienen el mismo punto de aplicación se habla de fuerzas concurrentes. Si son paralelas y tienen distinto punto de aplicación se habla de fuerzas paralelas.
Cuando sobre un objeto actúan varias fuerzas, éstas se suman vectorialmente para dar lugar a una fuerza total o resultante. Si la fuerza resultante es nula, el objeto no se acelerará: seguirá parado o detenido o continuará moviéndose con velocidad constante. Esto quiere decir que todo cuerpo permanece en estado de reposo o de movimiento rectilíneo y uniforme mientras no actúe sobre él una fuerza resultante no nula.
Fórmula de la fuerza
F = m * a
La fuerza se mide en newtons (N), la masa en kilogramos (kg), y la aceleración en metros por segundo al cuadrado (m/s2). El peso de un cuerpo se calcula de forma análoga tomando la aceleración de la gravedad (g) cuyo valor aproximado es 10 m/s2
F = fuerza
m = masa
a = aceleración
Gravedad
Fenómeno en virtud del cual todos los cuerpos son atraídos hacia el centro de la Tierra con una fuerza F= m*g, siendo m la masa del cuerpo en estudio y g la aceleración de la gravedad. La fuerza (F) recibe el nombre de peso-fuerza o, para abreviar, peso del cuerpo. La ley de la gravedad es un caso particular de la ley de gravitación universal de Isaac Newton.
Toda la materia está sometida a la fuerza de gravedad. Para un objeto, la atracción que sufre es su peso. La fuerza de gravedad se mide en newtons (N). Su valor es 9,81 N, por cada kg de materia en la superficie terrestre.
Centro de gravedad
Es el punto de aplicación de la fuerza peso en un cuerpo, y que es siempre el mismo, sea cual sea la posición del cuerpo. Para determinar el centro de gravedad hay que tener en cuenta que toda partícula de un cuerpo situada cerca de la superficie terrestre está sometida a la acción de una fuerza, dirigida verticalmente hacia el centro de la Tierra, llamada fuerza gravitatoria.

Cuanto más bajo es el centro de gravedad, más estable es el objeto. El centro de gravedad de un objeto simétrico se halla en el centro del objeto. Si un objeto es irregular, el centro de gravedad puede estar situado fuera de su perímetro. Cada segundo, los objetos en caída libre, aumentan su velocidad en 9,81 m/s debido al efecto de la gravedad.
Gravitación
Propiedad característica de la materia que consiste en el hecho de que entre los cuerpos materiales se ejerce siempre una atracción mutua proporcional a sus masas e inversamente proporcional al cuadrado de sus distancias.
La gravitación es la propiedad de atracción mutua que poseen todos los objetos compuestos de materia. A veces se utiliza como sinónimo el término gravedad, aunque estrictamente este último sólo se refiere a la fuerza gravitacional entre la Tierra y los objetos situados en su superficie o cerca de ella. La gravitación es una de las cuatro fuerzas básicas que controlan las interacciones de la materia; las otras tres son las fuerzas nucleares débil y fuerte, y la fuerza electromagnética.
Masa
La masa es la magnitud fundamental de la física. Masa (física), propiedad intrínseca de un cuerpo, que mide su inercia, es decir, la resistencia del cuerpo a cambiar su movimiento. La masa no es lo mismo que el peso, que mide la atracción que ejerce la Tierra sobre una masa determinada.
Desde un punto de vista estático masa puede precisarse como: dos cuerpos de la misma forma e igual volumen, constituidos por la misma sustancia, se dice que tienen la misma masa, es decir, la misma cantidad de materia:
- Se mide en kilogramos (kg) y también en gramos, toneladas, libras, onzas, etc.
- La masa es una propiedad intrínseca de un cuerpo, que mide su inercia, es decir, la resistencia del cuerpo a cambiar su movimiento.
- La masa inercial y la masa gravitacional son iguales.
- Dos masas iguales situadas en el mismo punto de un campo gravitatorio tienen el mismo peso.
Un principio fundamental de la física clásica es la ley de conservación de la masa, que afirma que la materia no puede crearse ni destruirse. Esta ley se cumple en las reacciones químicas, pero no ocurre así cuando los átomos se desintegran y se convierte materia en energía o energía en materia
La teoría de la relatividad, cambió el concepto tradicional de masa. La relatividad demuestra que la masa de un objeto varía cuando su velocidad se aproxima a la de la luz, es decir, cuando se acerca a los 300.000 kilómetros por segundo; la masa de un objeto que se desplaza a 260.000 km/s, por ejemplo, es aproximadamente el doble de su llamada masa en reposo.
Cuando los cuerpos alcanzan estas velocidades, la masa puede convertirse en energía y viceversa, como sugería la famosa ecuación de Einstein, E=mc2 (la energía es igual a la masa por el cuadrado de la velocidad de la luz).
Mecánica
Mecánica es una de las ramas de la física que se ocupa del movimiento de los objetos y de su respuesta a las fuerzas. Nuestra experiencia diaria nos dice que el movimiento de un cuerpo esta influenciado por los cuerpos que lo rodean; esto es por sus interacciones con ellos. Hay varias reglas generales o principios que se aplican a todas las clases de movimiento, no importa cual sea la naturaleza de las interacciones. Este conjunto de principios, y la teoría que los sustenta, se denomina mecánica.
Hasta hace unos 400 años el movimiento se explicaba desde un punto de vista muy distinto. Por ejemplo, los científicos razonaban -siguiendo las ideas del filósofo y científico griego Aristóteles- que una bala de cañón cae porque su posición natural está en el suelo; el Sol, la Luna y las estrellas describen círculos alrededor de la Tierra porque los cuerpos celestes se mueven por naturaleza en círculos perfectos.
Newton es el principal responsable de la ciencia de la mecánica como la comprendemos hoy en día. Sin embargo, muchas personas más han contribuido a su avance. Algunos de los nombres más ilustres son Arquímedes, Galileo, Kepler, Descartes, Huygens, Hamilton, Mach y Einstein.
Peso
Peso, medida de la fuerza gravitatoria ejercida sobre un objeto. En las proximidades de la Tierra, y mientras no haya una causa que lo impida, todos los objetos caen animados de una aceleración, g, por lo que están sometidos a una fuerza constante, que es el peso.
Si m es la masa del cuerpo y g la aceleración de gravedad, se tiene:
P = m*g
Un cuerpo de masa el doble que otro, pesa también el doble. Se mide en Newtons (N) y también en kg-fuerza, dinas, libras-fuerza, onzas-fuerza, etc.
El kg, es por tanto, una unidad de masa, no de peso. Sin embargo, muchos aparatos utilizados para medir pesos (básculas), tienen sus escalas graduadas en kg en lugar de kg-fuerza. Esto no suele representar, normalmente, ningún problema ya que 1 kg-fuerza es el peso en la superficie de la Tierra de un objeto de 1 kg de masa. Por lo tanto, una persona de 60 kg de masa pesa en la superficie de la Tierra 60 kg-Fuerza. Sin embargo, la misma persona en la Luna pesaría sólo 10 kg-fuerza, aunque su masa seguiría siendo de 60 kg.
Tiempo
Periodo durante el que tiene lugar una acción o acontecimiento, o dimensión que representa una sucesión de dichas acciones o acontecimientos. El tiempo es una de las magnitudes fundamentales del mundo físico, igual que la longitud y la masa. En la actualidad se emplean tres métodos astronómicos para expresar el tiempo. Los dos primeros se basan en la rotación diaria de la Tierra sobre su eje, y se refieren al movimiento aparente del Sol (tiempo solar) y de las estrellas (tiempo sidéreo). El tercer método astronómico para medir el tiempo se basa en la rotación de la Tierra en torno al Sol (tiempo de efemérides).

En la antigüedad las medidas de tiempo estaban basadas en la periodicidad de algunos fenómenos naturales como el día y la noche, las estaciones, las fases lunares y en general los fenómenos de tipo astronómico. Luego se idearon algunos objetos como el reloj de arena, el de agua y posteriormente el de péndulo, hasta llegar a los relojes digitales que están basados en las oscilaciones de corrientes eléctricas minúsculas y los más precisos relojes atómicos basados en las propiedades radiactivas de algunos materiales.
Velocidad
La velocidad de un cuerpo es el espacio que recorre en un intervalo de tiempo determinado. La unidad de medida universal es el m/s (metros por segundo). Velocidad es una magnitud vectorial. Es la variación de la posición de un cuerpo por unidad de tiempo. La velocidad es un vector, esto quiere decir, que tiene módulo (magnitud), dirección y sentido.
La magnitud de la velocidad, conocida también como rapidez o celeridad, se suele expresar como distancia recorrida por unidad de tiempo (normalmente, una hora o un segundo); se expresa, por ejemplo, en kilómetros por hora o metros por segundo. Cuando la velocidad es uniforme (constante) se puede determinar sencillamente dividiendo la distancia recorrida entre el tiempo empleado.
Cuando un objeto está acelerado, su vector velocidad cambia a lo largo del tiempo. La aceleración puede consistir en un cambio de dirección del vector velocidad, un cambio de su magnitud o ambas cosas.
Fórmula:
V = d/t mts/seg o cm/seg
V = velocidad
d = distancia
t = tiempo
Categorías:Competencias de física, Nivel básico