Electrónica y automatización

Conceptos básicos de electricidad para instalaciones eléctricas

Contenidos temáticos

  1. Partes de un circuito eléctrico
  2. Corriente eléctrica
  3. Voltaje
  4. Resistencia eléctrica
  5. Ley de Ohm
  6. Potencia eléctrica
  7. Circuito serie
  8. Circuito paralelo
  9. Caída de voltaje

Desarrollo del tema

1. Partes de un circuito eléctrico

A la hora de analizar un circuito es conveniente conocer la terminología de cada elemento que lo forma. A continuación se indican las partes más comunes:

Circuito con nodos A, B, C y D.
  • Conector: Hilo conductor de resistencia despreciable (idealmente cero) que une eléctricamente dos o más elementos.
  • Generador o fuente: Elemento que produce electricidad. En el circuito de la figura 1 hay tres fuentes, una de intensidad, I, y dos de tensión, E1 y E2.
  • Red: Conjunto de elementos unidos mediante conectores.
  • Nudo o nodo: Punto de un circuito donde concurren varios conductores distintos. En la figura 1 se observan cuatro nudos: A, B, D y E. Obsérvese que C no se ha tenido en cuenta ya que es el mismo nudo A al no existir entre ellos diferencia de potencial (VA – VC = 0).
  • Rama: Conjunto de todos los elementos de un circuito comprendidos entre dos nudos consecutivos. En la figura 1 se hayan siete ramas: AB por la fuente, AB por R1, AD, AE, BD, BE y DE. Obviamente, por una rama sólo puede circular una corriente.
  • Línea cerrada: Conjunto de ramas que forman un bucle cerrado. En la figura 1 ABA, ABDA, BEDB, ADEA, etc. son líneas cerradas.
  • Malla: Línea cerrada que no contiene elementos en su interior. En la figura 1 hay cuatro mallas: ABCA, BCDB, BEDB y ADEA.
  • Circuito: Red con al menos una línea cerrada por la que puede circular la corriente…
  • Elemento bilateral: Aquel que tiene las mismas características para polaridades opuestas. Por ejemplo, por una resistencia o por un conductor circulará la misma corriente si se invierte la polaridad de las fuentes.
  • Elemento unilateral: Aquel que tiene diferentes características para diferentes polaridades, como ocurre por ejemplo con el diodo.
  • Circuito equivalente: Aquel que puede remplazarse por otro más complejo proporcionando el mismo resultado.

2. Corriente eléctrica

Lo que conocemos como corriente eléctrica no es otra cosa que la circulación de cargas o electrones a través de un circuito eléctrico cerrado, que se mueven siempre del polo negativo al polo positivo de la fuente de suministro de fuerza electromotriz (FEM).

Quizás hayamos oído hablar o leído en algún texto que el sentido convencional de circulación de la corriente eléctrica por un circuito es a la inversa, o sea, del polo positivo al negativo de la fuente de FEM.

Ese planteamiento tiene su origen en razones históricas y no a cuestiones de la física y se debió a que en la época en que se formuló la teoría que trataba de explicar cómo fluía la corriente eléctrica por los metales, los físicos desconocían la existencia de los electrones o cargas negativas.

Al descubrirse los electrones como parte integrante de los átomos y principal componente de las cargas eléctricas, se descubrió también que las cargas eléctricas que proporciona una fuente de FEM (Fuerza Electromotriz), se mueven del signo negativo (–) hacia el positivo (+), de acuerdo con la ley física de que “cargas distintas se atraen y cargas iguales se rechazan“.

Debido al desconocimiento en aquellos momentos de la existencia de los electrones, la comunidad científica acordó que, convencionalmente, la corriente eléctrica se movía del polo positivo al negativo, de la misma forma que hubieran podido acordar lo contrario, como realmente ocurre. No obstante en la práctica, ese “error histórico” no influye para nada en lo que al estudio de la corriente eléctrica se refiere.

3. Voltaje

Con frecuencia confundimos los términos de Voltaje, Potencial o Tensión y Diferencia de potencial, se aclara que los tres conceptos se refieren al mismo fenómeno pero a hay diferencia en su significado: El termino Voltaje es derivado de la palabra Volt y se refiere a la magnitud de la variable expresada como potencial o tensión eléctrica.

El Volt es una unidad para dimensionar la variable de potencial eléctrico dentro que se genera entre dos puntos dentro del campo eléctrico, y el termino diferencia de potencial se utiliza para expresar la magnitud del potencial eléctrico existente entre dos puntos dentro del campo eléctrico que como se mencionó su unidad es el Volt.

Es importante hacer notar que el término correcto es “Diferencia de potencial”, y que los aparatos de medición están diseñados y calibrados para medir la magnitud de esta variable y que esta referida a la tierra a la que se encuentra a CERO Potencial Eléctrico

El voltaje, tensión o diferencia de potencial es la presión que ejerce una fuente de suministro de energía eléctrica o fuerza electromotriz (FEM) sobre las cargas eléctricas o electrones en un circuito eléctrico cerrado, para que se establezca el flujo de una corriente eléctrica.

A mayor diferencia de potencial o presión que ejerza una fuente de FEM sobre las cargas eléctricas o electrones contenidos en un conductor, mayor será el voltaje o tensión existente en el circuito al que corresponda ese conductor.

Las cargas eléctricas en un circuito cerrado fluyen del polo negativo al polo positivo de la propia fuente < de fuerza electromotriz. La diferencia de potencial entre dos puntos de una fuente de FEM se manifiesta como la acumulación de < cargas eléctricas negativas (iones negativos o aniones), con exceso de electrones en el polo negativo (–) < y la acumulación de cargas eléctricas positivas (iones positivos o cationes), con defecto de electrones< en el polo positivo (+) de la propia fuente de FEM.

4. Resistencia eléctrica

La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente. Descubierta por Georg Ohm en 1827, la resistencia eléctrica tiene un parecido conceptual a la fricción en la física mecánica. La unidad de la resistencia en el Sistema Internacional de Unidades es el ohmio (Ω).

Para su medición en la práctica existen diversos métodos, entre los que se encuentra el uso de un ohmnímetro. Además, su cantidad recíproca es la conductancia, medida en Siemens.

La resistencia de cualquier objeto depende únicamente de su geometría y de su resistividad, por geometría se entiende a la longitud y el área del objeto mientras que la resistividad es un parámetro que depende del material del objeto y de la temperatura a la cual se encuentra sometido.

Esto significa que, dada una temperatura y un material, la resistencia es un valor que se mantendrá constante. Normalmente los electrones tratan de circular por el circuito eléctrico de una forma más o menos organizada, de acuerdo con la resistencia que encuentren a su paso.

Mientras menor sea esa resistencia, mayor será el orden existente en el micro mundo de los electrones; pero cuando la resistencia es elevada, comienzan a chocar unos con otros y a liberar energía en forma de calor.

Esa situación hace que siempre se eleve algo la temperatura del conductor y que, además, adquiera valores más altos en el punto donde los electrones encuentren una mayor resistencia a su paso.

5. Ley de Ohm

La corriente fluye por un circuito eléctrico siguiendo varias leyes definidas. La ley básica del flujo de la corriente es la ley de Ohm, así llamada en honor a su descubridor, el físico alemán Georg Ohm.

V, I y R, los parámetros de la ley de Ohm

Según la ley de Ohm, la cantidad de corriente que fluye por un circuito formado por resistencias puras es directamente proporcional a la fuerza electromotriz aplicada al circuito, e inversamente proporcional a la resistencia total del circuito. Esta ley suele expresarse mediante la fórmula I = V/R, siendo I la intensidad de corriente en amperios, V la fuerza electromotriz en voltios y R la resistencia en ohmios. La ley de Ohm se aplica a todos los circuitos eléctricos, tanto a los de corriente continua (CC) como a los de corriente alterna (CA), aunque para el análisis de circuitos complejos y circuitos de CA deben emplearse principios adicionales que incluyen inductancias y capacitancias.

Un circuito en serie es aquél en que los dispositivos o elementos del circuito están dispuestos de tal manera que la totalidad de la corriente pasa a través de cada elemento sin división ni derivación en circuitos paralelos. Cuando en un circuito hay dos o más resistencias en serie, la resistencia total se calcula sumando los valores de dichas resistencias.

En un circuito en paralelo los dispositivos eléctricos, por ejemplo las lámparas incandescentes o las celdas de una batería, están dispuestos de manera que todos los polos, electrodos y terminales positivos (+) se unen en un único conductor, y todos los negativos (-) en otro, de forma que cada unidad se encuentra, en realidad, en una derivación paralela. El valor de dos resistencias iguales en paralelo es igual a la mitad del valor de las resistencias componentes y, en cada caso, el valor de las resistencias en paralelo es menor que el valor de la más pequeña de cada una de las resistencias implicadas. En los circuitos de CA, o circuitos de corrientes variables, deben considerarse otros componentes del circuito además de la resistencia.

6. Potencia eléctrica

La potencia eléctrica es la relación de paso de energía de un flujo por unidad de tiempo; es decir, la cantidad de energía entregada o absorbida por un elemento en un tiempo determinado. La unidad en el Sistema Internacional de Unidades es el vatio (watt).

Cuando una corriente eléctrica fluye en un circuito, puede transferir energía al hacer un trabajo mecánico o termodinámico.

Los dispositivos convierten la energía eléctrica de muchas maneras útiles, como calor, luz (lámpara incandescente), movimiento (motor eléctrico), sonido (altavoz) o procesos químicos.

La electricidad se puede producir mecánica o químicamente por la generación de energía eléctrica, o también por la transformación de la luz en las células fotoeléctricas. Por último, se puede almacenar químicamente en baterías.

7. Circuito serie

Un circuito en serie es una configuración de conexión en la que los bornes o terminales de los dispositivos (generadores, resistencias, condensadores, interruptores, entre otros.) se conectan secuencialmente. La terminal de salida del dispositivo uno se conecta a la terminal de entrada del dispositivo siguiente.

Siguiendo un símil hidráulico, dos depósitos de agua se conectarán en serie si la salida del primero se conecta a la entrada del segundo. Una batería eléctrica suele estar formada por varias pilas eléctricas conectadas en serie, para alcanzar así el voltaje que se precise.

El término se utiliza principalmente para definir un trayecto continuo compuesto por conductores y dispositivos conductores, que incluye una fuente de fuerza electromotriz que transporta la corriente por el circuito.

Un circuito de este tipo se denomina circuito cerrado, y aquéllos en los que el trayecto no es continuo se denominan abiertos.

Un cortocircuito es un circuito en el que se efectúa una conexión directa, sin resistencia, inductancia ni capacitancia apreciables, entre los terminales de la fuente de fuerza electromotriz.

8. Circuito paralelo

El circuito eléctrico en paralelo es una conexión donde los puertos de entrada de todos los dispositivos (generadores, resistencias, condensadores, etc.) conectados coincidan entre sí, lo mismo que sus terminales de salida.

Siguiendo un símil hidráulico, dos tinacos de agua conectados en paralelo tendrán una entrada común que alimentará simultáneamente a ambos, así como una salida común que drenará a ambos a la vez. Las bombillas de iluminación de una casa forman un circuito en paralelo, gastando así menos energía.

En función de los dispositivos conectados en paralelo, el valor total o equivalente se obtiene con las siguientes expresiones.

Asociación de pilas: calcular el voltaje total: (v1+v2+v3…)/vn → (Cada componente tiene el voltaje de la fuente A y B) los circuitos serie o paralelo sirven para tener un reparo automático de conexiones o circuitos automáticos como por ejemplo un foco o una lámpara que es lo mismo.

9. Caída de voltaje

Llamamos caída de tensión de un conductor a la diferencia de potencial que existe entre los extremos del mismo. Este valor se mide en voltios y representa el gasto de fuerza que implica el paso de la corriente por ese conductor.

Así mismo, la caída de tensión es medida frecuentemente en tanto por ciento de la tensión nominal de la fuente de la que se alimenta. Por lo tanto, si en un circuito alimentado a 400 Voltios de tensión se prescribe una caída máxima de tensión de una instalación del 5%, esto significará que en dicho tramo no podrá haber más de 20 voltios, que sería la tensión perdida con respecto a la tensión nominal.

No existe un conductor perfecto, pues todos presentan una resistividad al paso de la corriente por muy pequeña que sea, por este motivo ocurre que un conductor incrementa la oposición al paso de la corriente, a medida que también va aumentando su longitud. Si esta resistencia aumenta, por consiguiente aumenta el desgaste de fuerza, es decir, la caída de tensión.

Podríamos decir que la caída de tensión de un conductor viene determinada por la relación que existe entre la resistencia que ofrece este al paso de la corriente, la carga prevista en el extremo más lejano del circuito y el tipo de tensión que se aplicará a los extremos.

Recurso didáctico de apoyo